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This paper investigates the flow near the summit of steep, progressive gravity wave 
when the crest is still rounded but the flow is approaching Stokes's corner flow. The 
natural length scale in the neighbourhood of the summit is seen to be 1 = q2/2g, where 
g denotes gravity and q is the particle speed at the crest in a reference frame moving 
with the wave speed. We show that a class of self-similar smooth local flows exists 
which satisfy the free-surface condition and which tend to Stokes's corner flow when 
the radial distance r becomes large compared with 1. The behaviour of the solution at 
large values of rll is shown to depend on the roots of the transcendental equation 

K tanh K = 7r/2 4 3 .  

The two real roots correspond to a damped oscillation of the free surface decaying like 
(+)a. The positive imaginary roots correspond to perturbations vanishing like higher 
negative powers of r .  

The complete flow is calculated by transforming the domain onto the interior of a 
circle in the complex plane and expanding the potential at the surface in a Fourier 
series. The computation is checked by an independent method, based on approxi- 
mating the flow by a sequence of dipoles. The profile of the surface is found to intersect 
its asymptote at  large values of rll. This implies that the maximum slope slightly 
exceeds 30". The computed value 30.37" is in close agreement with that obtained by 
extrapolating the maximum slopes of steep gravity waves, as calculated by previous 
authors. The vertical acceleration of a particle at  the crest is 0.3888. In  the far field, 
however, the acceleration tends to the value +g corresponding to the Stokes corner 
flow. 

1. Introduction 
Though the theory of water waves of low or moderate steepness is in many respects 

well developed, the situation is quite otherwise for surface waves whose steepness is 
such that the waves are close to breaking. Even for steady progressive irrotational 
waves, when surface tension and viscosity are both neglected, the problem is made 
both difficult and interesting by the nonlinearity of the condition that the pressure 
must be a constant at  the free surface. A possible limiting form for the crest of a gravity 
wave in which the free surface forms a sharp corner with a 120" internal angle was 
suggested by Stokes (1880). This local solution has been used as the starting-point for 
calculations of the complehe form of the steepest progressive wave in deep water by 
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Michell (1893), Yamada (1957a), Schwartz (1974) and others; and for the steepest 
solitary wave by Yamada (1957b)) Lenau (1966) and Schwitters (1966). Some simple 
approximations to the limiting wave were given by Longuet-Kiggins (1973, 1974). 

These calculations, however, refer only to the steepest possible waves. What is the 
form of waves that are steep but do not yet have a sharp angle a t  the crest? Here the 
small-amplitude expansions of Stokes for periodic waves and Rayleigh for solitary 
waves, though they yield surprising and interesting results (Schwartz 1974; Longuet- 
Higgins & Fenton 1974; Longuet-Higgins 1975; Cokelet 1976) are mathematically 
very inconvenient. The same is also true of the numerical techniques used by Sasaki 
& Murakami (1973) and the integral-equation method of Byatt-Smith & Longuet- 
Higgins (1976)) both of which involve computations of increasing length as the limit of 
a sharp-crested wave is approached. 

An attempt to calculate the form of waves having nearly the limiting amplitude was 
first made by Havelock (1918) by perturbing Michell's solution for the highest wave. 
But Grant (1973) has pointed out that the analytical structure of the highest wave 
must be more complicated than was assumed by Havelock. 

I n  this paper we pose the following question. As a progressive gravity wave, of con- 
stant length, approaches its maximum height, and while the crest is still rounded, does 
the flow near the wave crest have asymptotically some limiting form? I n  other words, 
if K denotes the curvature a t  the crest and r the radial distance, is there a smooth flow 
with length scale of o r d e r r l ,  having no sharp discontinuity in surface slope, which as 
tcr tends to infinity approaches the Stokes 120" corner flow? Further, if such a flow 
exists is it unique ? 

Consider first the natural length scale for such a flow. Let the wave be reduced to a 
steady flow by reference to a frame moving with the phase velocity c.  I n  this frame let 
q denote the speed of flow a t  the crest. For a sharp corner flow, q will vanish. Generally, 
when q 9 0, an appropriate scale 1 for the local flow should be given by 

1 = q2/2g. (1.1) 

I n  figure 1 we have taken the profiles of three different steep solitary waves, calculated 
by Byatt-Smith & Longuet-Higgins (1976)) a t  equally spaced values of the parameter 

w = 1 - q2/gh, (1.2) 

where h denotes the undisturbed depth of water, and have rescaled them by using as 
the unit of length 

It will be seen that the different profiles now lie close to each other and appear to 
approach a limiting curve, shown by the broken line. 

Encouraged by this numerical evidence we proceed in $ 2  to a precise definition of the 
problem, and subsequently to a numerical solution, by two quite independent meth- 
ods. In  the first of these methods ($5)  the velocity potential is approximated by a 
sequence of singularities (poles) situated above the free surface, whose strengths are 
adjusted so as to satisfy the constant-pressure condition a t  regularly spaced points 
along the free surface. For a good approximation, six dipoles are quite sufficient. In  the 
second method ($6)  the domain of the flow is transformed conformally onto the in- 
terior of a circle, and the space co-ordinate on the circumference is expanded in a 

I = q2/2g = &(I-W)h. (1.3) 
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Fourier series. The free-surface condition then gives an infinite sequence of nonlinear 
(cubic) equations to be satisfied by the coefficients. When solved numerically by 
truncation and successive approximation the solution rapidly converges. Moreover, 
we find very close agreement between this and the previous method, which strongly 
suggests that the solution to the problem is unique. 

For large values of the dimensionless radius r / l  the solution tends to the Stokes 
corner flow, not monotonically as was a t  first expected, but in an oscillatory manner 
(see figure 9). The period of oscillation is given by the real root of a simple transcen- 
dental equation (4.12). This implies that the maximum slope of the free surface very 
slightly exceeds that in the Stokes corner flow. The maximum angle is found to be 
30.37", which is checked with remarkable accuracy by an extrapolation of the recent 
results of Sasaki & Murakami (1973) both for solitary waves and for periodic waves in 
deep water. This conclusion has implications for certain existence proofs which have 
assumed the maximum slope angle not to exceed 30'. 

2. Definition of the problem 
I n  a frame of reference moving with the wave speed, take polar co-ordinates r,  0 as in 

figure 2, with the origin 0 above the wave crest and the radius 0 = 0 directed vertically 
downwards. Writing 

z = reie,  x = q5+i$-, (2.1) 

where q5 and @ are the velocity potential and stream function, the pressurep is given by 
Bernoulli's equation 

(the density being taken as unity). On the free surface $- = 0 the pressure is a constant, 
say zero. By vertical adjustment of the origin, the constant C may be made to vanish. 
Hence 

p+iIdX/dzl2--grcosO = C (2.2) 

IdX/dzI2 = 2 g r c 0 ~ 0  on @ = 0. (2.3) 

0 

s 

FIGURE 2. Axes and co-ordinates in the physical plane. 
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I n  Stokes's well-known corner flow (Stokes 1880) we have 

ix = $gbzf ,  (2.4) 

and the free surface 0 = _+ in passes through the origin, which is a stagnation point. 
Now, on the other hand, we are seeking a solution in which the velocity q at the crest is 
different from zero. Thus we may choose units of length and time so that 

g = 1,  q 2 =  2, (2.5) 

making the vertical distance of the origin 0 above the wave crest equal to unity also. 
Lastly we require that the flow shall tend to the Stokes corner flow at infinity, that is 
to say 

ix - $23 as r+m. (2.6) 

3. A transformation of co-ordinates 
Let us make the transformation 

f ~ i 3  = < = p&,  (3.1) 

so that in effect we map the required flow onto the Stokes corner flow. In  the [ plane 
our required flow appears as in figure 3. From (2.1) and (3.1) we have 

p = gr3, u = p, (3.2) 

so that the boundary condition (2.3) becomes 

Idx/d<J2 = 2 cos ( 2 ~ / 3 ) ,  

i x - 5  as <+m. 
with the condition 

(3.3) 

(3.4) 

This is obviously satisfied by the Stokes corner flow ix = 6 but only on the streamline 
u = in passing through the origin. In  other words, no interior streamline of the 
Stokes corner flow is a line of constant pressure. Now in figure 3 we require that the 
free surface pass not through the origin but through the point 

z = 1 ,  [ = " -  3 - Po. (3.5) 

We note that in order for the free surface to be asymptotic to the line I!? = in in 
figure 2 it  is necessary only t,hat rl0 - 4.1 + O  as r+w. In  figure 3 this implies that 
pj11~-+nl -+O or that. 

Plu-3nl = O ( P 9 .  (3.6) 

5 
FIGURE 3. Axes and co-ordinnt,es in the plane of 6 = 32'. 
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I n  other words i t  is still permissible for the free-surface streamline in figure 3 to  diverge 
from the line u = $n by an amount that is o(p*) asp -+ 00. If on the ot,her hand we impose 
the stronger condition that 

that  is, the displacement of the surface streamline in the 5 plane is bounded, then it 
follows that 

plu-&rl 7 O ( l ) ,  

.lf?-+nI = O(r-i), (3.7) 

in other words, in the physical plane, the displacement of the free surface will tend to 
zero like r-4. 

4. Asymptotic behaviour at infinity 

that 
Let us now examine more closely the behaviour of the flow as r -+ co. Suppose first 

(4.1) ix N 5 + iP - Q/CA, 

where P, Q and A are real constants, with h > 0. The first two terms on the right repre- 
sent a uniform flow, and the third term a small perturbation of order p - A  as p + co. 
From the real part of (4.1), 

Hence on the free surface $ = 0 the normal displacement E = p cos u is given by 

- $ N p cosu - Q P - ~  COSAU. (4.2) 

s o  
(4.3) 

From (4.2) we calculate, with neglect of p-2(A+1), 

and 
ldx/d(J2 = ( a $ / a ~ ) ~  + (p-'a$/p 8 ~ ) '  N 1 + 2 A Q p - ( A + + ' ) ~ ~ ~  ( A  + 1)  U, 

2 cos ( 2 4 3 )  N 1 + 4 3  sin ( 2 F / 3 )  N 1 + (2/43) c/p N 1 + (2143) Qp++') cos $AT 

when 4 = 0. Thus the boundary condition (3.3) is satisfied to orderp-(A+l)provided that 

that is 

or 

A cos $(A  + 1 )  n = (1/43) cos $Am, 

- A sin &An = (1/43) cos $An, 

$An tan $An = - n/2 43.  

The smallest positive root of this equation is 

corresponding to 
*An = 2.8316, 

h = 1.8027. 

(4.4) 

It is interesting to note that in examining the form of the highest wave, in the neigh- 
bourhood of the wave crest, Grant (1973) arrived at an expansion of the form 

2 N A (ix)Q + B(iX)", 
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where A ,  B and v were constants with v satisfying 

tan gvn = - (4 + 3v)/343 v. (4.7) 

Y = - ( A + + )  (4.8) 

At first sight (4.7) appears more complicated than (4.4). However, on writing 

the reader will find, after some working, that (4.7) reduces to (4.4) precisely. Grant 
(1973) was interested only in expansions for z valid in the neighbourhood of the crest 
(z -+ 0) .  He therefore calculated the smallest root of (4.7) greater than 3 .  By (4.8), this 
corresponds to the smallest root of (4.4) less than - 1, namely h = - 1.8027. Other 
roots of (4.7) appropriate to Grant's problem correspond to negative roots of (4.4). 

Equation (4.4) evidently has an infinity of real positive roots, each corresponding 
to a surface perturbation vanishing algebraically as p -+ 00. In  addition there are two 
imaginary roots h = & ip, say. To find the significance of these, let us assume, instead 

(4.9) of (4.1), that 

where P and ,u are real, Q = A eic and Q* = A e-ic. The flow is still symmetric about the 
line ucr = 0 and we now have 

- ~ - p cos ucr- A coshpucrcos (plnp -e).  (4.10) 

ix - c+ iP - Q126' - Q*/Zc+, 

Therefore on the free surface 
6 N Bcos(plnp-i) ,  (4.1 1)  

where B is written for Acoshipun. On applying the free-surface condition (3.3) as 
before we now obtain 

$,urn tanh +pn = n/2J3. (4.12) 

This would also result from writing h = ip in (4.4). The only positive root of (4.12) is 

giving 
gpn = 1.1220, 

,U = 0.7143. 

(4.13) 

(4.14) 

In this solution the perturbation 6 is oscillatory by (4.1 1 ) ,  but it is bounded, so that in 
the physical plane the surface displacement is O(r-4) at infinity. This mode evidently 
dominates over the modes corresponding to real positive roots of (4.4), since these 
vanish like r-(3h+1)12, which for the smallest root (4.6) is r-3204. 

The most general asymptotic expression of the form (4.1) or (4.9) satisfying the 
condition of symmetry about the line CT = 0 is 

ix N c+ iP - Q/CA - Q*/CA*, (4.15) 

where h is complex, and A* is its conjugate. But it is easy to show that there exists no 
physically acceptable solution of the form (4.15), satisfying the boundary condition 
(3.3), apart from those already found. 

To summarize, the asymptotic behaviourof x as r+Oo is given by (4.9), provided that 
,u satisfies the characteristic equation (4.12). The only positive root of (4.12) corres- 
ponds to an oscillation which decays at  large distances like r-4. The negative imaginary 
roots of (4.12) correspond to perturbations which decay more rapidly than r-4. The 
positive imaginary roots of (4.12) correspond to perturbations which tend to 00 with 
r but tend to 0 as r --f 0. They are relevant to Grant's problem, namely the expansion of 
the highest wave in the neighbourhood of the sharp corner. 
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Equation (4.12) bears an obvious resemblance to the dispersion relation 

( 2 n h / L )  tanh (2nhlL) = w2h/g 

which occurs in the Stokes theory of infinitesimal waves of length L and radian fre- 
quency w in water of mean depth h. 

5. An approximation by dipoles 
To obtain an approximation valid over the central range of q5 we return to figure 3 

and note that the flow in the lower half-plane may be roughly represented by a uniform 
flow together with a dipole situated at  some point directly above the wave crest: 

ix = c - A / ( c + d ) .  (5.1) 

Here A and d are real constants to be chosen 80 as to satisfy the boundary conditions 
at some point on the surface, say the crest 6 = po = $. At this point we have 

1c. = 0 and ldx/dcj2 = 2 .  (5 .2 )  

Substitution from (5.1) yields respectively 

A/(d+p,) = po and 1 + A / ( d  +po)2 = 4 2 .  

s o  d = 42p0, A = ( 4 2 +  1)~:. (5.3) 

5 = A (6 + d ) / [ ( t  + a2 + VI, (5.4) 

The equation of the free surface @ = 0 is then 

where 6 + iq = 5. This represents a cubic curve in the <,q  plane. 
Closer approximations may be obtained by placing a sequence of dipoles along the 

negative 6 axis, so representing the cut in the c plane. The positions of the dipoles may 
be chosen so as to be regularly and densely distributed over the negative 5 axis. We 
may also adjust the position of the origin by writing 

2' = + D, 5' I p'&' = $2'9. (5.5) 

Hence we set 

where d ,  = p;tan{mn/2(M+ I)), m = i , 2  ... 31, (5.7) 

ldx/dc'Iz = ~ C O S  ( 2 ~ ' / 3 )  - 2D(3p1/2)-9 (5.8) 

and the constants A ,  . . . A ,  and D are to be chosen to satisfy the Bernoulli condition 

at  M suitably chosen points on the free surface $ = 0, say when u' = jn/2M (j = 0, 
I ,  . . . , ill - l), together with the scaling condition 

p' = p' - - $( 1 + D)t  when a' = 0. (5.9) 

Then by rescaling with respect to p; y e  obtain a system of equations which is easily 
solved numerically. The resulting profiles are found to converge rapidly (see figure 4). 
The values of A,,  . . ., A,, and d,, . . . , dA,l when M = 7 are given in table 1.  We have also 

D = 0.21225, ph = 0.88981. 
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d m l A  
0.19891 
0.41421 
0.66818 
1~00000 
1.49661 
2.41421 
5.02734 

A m l A '  
0.06891 

-0.15294 
0.61481 
0.76622 
1-22932 

-0.18775 
3.79920 

TABLE 1. Positions and strengths of the dipoles 
in the flow given by (5.7), when M = 7. 

For any fixed value of M the dipole terms in (5.6) behave like &'-I for large y, so the 
approximation does not have the correct behaviour at infinity. Nevertheless we shall 
see that for finite values of M the resulting profile provides an excellent check on the 
independent method of calculation to be described in 0 6. 

6. Calculation of the complete flow 
We shall now calculate the complete solution by a method similar to that used by 

Michell (1893) for the profile of the highest progressive wave in deep water, and by 
Lenau (1966) for the highest solitary wave. Let us take as co-ordinates the potential q5 
and stream function @ (in the steady motion) and attempt to calculate the complex 
variable z = reie as an analytic functionof x = q5 + i$. z must be regular throughout the 
half-plane @ < 0 and at  all points on the boundary. Also z must be symmetric about 
the line q5 = 0. The free-surface condition (2.3) can be written 

Re{zldz/dxI2} = 3. (6.1) 

When x -+ co in the lower half-plane the solution must approach the Stokes corner flow. 
Hence 

or equivalently 
z N (iix)+ as x-fm, 

z/(S + ix)# -+ (*)+ as x += m, 

where S is any fixed positive constant. We also specify that z/(S+ix)# shall be of 
bounded variation on the surface @ = 0. 

We now transform the lower half-plane of x onto the interior of the unit circle in the 
plane of a new variable w (see figure 5) by writing 

ix = A 1  -4 /u  +@I,  w = (P--iX)/(8+iX), (6.3) 

where B is some real, positive constant. The wave crest A and the point at infinity in 
the x plane correspond to the points w = 1 and w = - 1 respectively. The centre C 
of the circle in the w plane corresponds to the point x = - ip on the negative @ axis. 
The point x = i,8 corresponds to the point E at infinity in the w plane. 

Now z/(S+ ix)# is analytic inside and on the circle [ wI = 1, except at tu = - 1, and so 
has an expansion in powers of w .  Thus 

z = (S+iX)f(b, + b , w + b , d +  ...), (6.4) 
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( N )  x planc (h) Id pl:1nc 

FIGURE 5. Representation of the flow (a) in the plane of x = $+i$ and ( b )  in the w plane. 

where the b, are real by symmetry. From the assumption of bounded variation the 
series converges absolutely and uniformly in and on the circle 1 0 1  = 1 .  Now 

6+ix = p [ a + ( l - W ) / ( l + w ) ] ,  (6.5) 

2 = / 3 q a + ( 1 - w ) / ( l + w ) ] ~ ( b , + b l w + b 2 w 2 +  ...) (6.6) 

where a = So (6.4) can be written 

and we may specify that the argument of the radical lies between & #n. 
Formally differentiating each side of (6.4) we have 

dz/dx = Qi(6 + ix)-+ (b, + b, OJ -I- b, w2 + . . .) 
+ (S+ix)j (b, + 2b2w+ 3b, w2 + ...) dw/dx. 

From (6.3) 

S O  
dw/dx = ( 1  +0)2/2iP. 

dz /dx  = i(6 + ix)-i [$(bo + b, w + b2 w2 + . . .) 
- ${a + 1 + 2aw + (a- 1 )  w2} (b1 + 2b2w + ...)I. (6.7) 

Provided that (8 + i x ) ) d z / d x  also is of bounded variation on Iw1 = 1 ,  the above power 
series are absolutely convergent and square-integrable. So we may form the product 
zldz/dx12 as a convergent Fourier series in r = argw, and, on substituting in (6.1), we 
have 

-f( bl+2b,eiT+36,e2'T+ ...){a+ 1 + 2 a e i T + ( a - l ) e Z i T } ] [  ...I*) = 4. (6.8) 

Lastly, to expand the radical in a Fourier series on IwI = 1 we have, since 

w* = e-ii = u-1, 

-- 6+ix a + ( 1 - w ) / ( l + w )  - ( 1 + a ) - ( 1 - a ) w  
6-ix* - a + ( w - i ) / ( w + l )  - ( l + a ) w - ( 1 - a ) '  

Hence 

where 

[(a + iX)/(S - ix*) ] )  = w - q  1 - y w ) )  ( 1  - y / w ) - ) ,  

y = ( 1  -(%)/(I +a). 

(6.9) 

(6.10) 
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The first factor on the right of (6.9) can be expanded as a Fourier series valid in 
-n < 7 < 7T: 

(6.11) 

and since JyJ < 1, both the second and third terms can always be expanded in power 
series uniformly convergent on the circle Iw( = 1, namely 

( l - y w ) +  = 1 - $ y & - I  SY Z e Z i r - . . ,  (6.12 a)  
(1 - y/u)-* = 1 + $7 e - i T  + Qyz e - 2 i T  + . . . . (6.12b) 

Finally substituting these expressions into (6.8) and equating coefficients of cos nr, 
where n = 0, 1, 2 . . . , we obtain a sequence of relations between the coefficients b,, b,, 
b, . . . . We impose also the scaling condition that x = 1 when x = 0. From (6.4) this gives 

b,+b,+b,+ ... = 6-8. (6.13) 

This system of equations may be solved by truncation and successive approximation, 
assuming that b, = 0 when n > N ,  say, where N is the order of the approximation. 
Then the coefficients of 1, cos 7, ..., cos ( N -  1)7 in (6.9) together with the scaling 
condition (6.13) give us N + 1 equations to determine b,, b,, . .., b,. 

The choice of a and p, and hence y = (a - l)/(a + 1) and 6 = ap, are at  our disposal. 
These may be selected so as to maximize the rate of convergence. However, experience 
showed that in fact the final solution was affected not at  all, and the convergence only 
weakly, by the choice of a, so long as this was O(1). From (6.10) it is obviously most 
convenient mathematically to take a = 1 so y = 0 and S = p. But in practice, with the 
aid of subroutines for handling power series, general values of a may be almost as 
easily accommodated. The value of p affects the relation (6.3) between x and w. A fixed 
point on the unit circle in the w plane corresponds, for a large value o:@, to a large value 
of x, and for a small value of p to a small value of x. Hence we expect that small values 
of 6 will give a more accurate representation of the profile near the wave crest, while 
large values of ,8 will give a better representation of the 'tails ' of the profile. Numerical 
solutions indicate that an optimum value ofp, for a 40-term series, is around lo*. 

7. Results of the calculation 
The method of $6  was programmed in FORTRAN I V  on the IBM 370-165 at 

Cambridge Universiky , a standard subroutine being used to solve the nonlinear alge- 
braic equations forb,, b,, . . . , b, (table 2). It was found that independently of the values 

n bn 

0 0.81 7769 
1 -0.558142 
2 -0.08458fj 
3 -0.031527 
4 -0.016685 
5 -0.008899 
6 -0.005894 

n 
7 
8 
9 

10 
11 
12 
13 

bn 

- 0.003474 
- 0.002572 
- 0.001666 
-0.001257 
- 0.000764 
- 0.000660 
- 0.000391 

r& 

14 
15 
16 
17 
18 
19 
20 

b" 
- 0.000365 
- 0.000206 
-0~000211 
- 0~000109 
-0*000126 
- 0.000058 
- 0.000078 

TABLE 2. Coefficients bn in the power series expansion (6.6), 
when a = 1 and B = 10.016. 
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FIQURE 8. A plot of 6 Re 5 against In r ,  for points on the free surface, when N = 20, 40 and 
60. Parameters: a = 0.5 and /3 = 10.0. The broken curve represents the sine wave (4.11) with 
B = 0.78 and 8 = - 10.3". 

N increases the approximations are tending towards a limiting curve, which crosses 
the asymptote again at In r = 4.23, or r = 68.5. From (4.11) one would expect that 
asymptotically 5 would oscillate harmonically in In r with wavelength 

2 n l & ~  = 4n13p = 5.864, (7.2) 

since p = 0.7143. In figure 8 the dashed curve represents a pure sine wave of exactly 
this wavelength which has been adjusted in amplitude and phase so as to pass through 
the calculated crossing at  In r = 4.23 and through the maximum at about In r = 2.8. 
The appropriate values of the constants in (4.11) are 

B = 0.78, E = -0.180rad. = - 10.3". 17.3) 

From this analysis it may be inferred that there are further crossings of the asymptote 
a t  regularly spaced values of In r ,  the next being at In r = 7.16 or r = 1286. 

Figure 9 shows the surface profile in the physical plane on a very small scale so that 
the second crossing of the asymptote, a t  r = 68.5, can just be discerned. At still greater 
values of r the profile is not graphically distinguishable from its asymptote. 
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of a or p the surface profile converged to a unique curve. The form near the wave crest is 
shown in figure 6. Also shown are the plotted points derived from the highest dipole 
approximation of Q 5.  It will be seen that the two sets of results are indistinguishable, 
thus providing a valuable check on the calculations and a strong indication that the 
solution to the problem is unique. Figure 7 shows the profile on a reduced scale. It 
appears a t  once tha t  the surface crosses its asymptotes and then approaches them 
gradually from above. The asymptotic behaviour of the profile as r + co can be seen 
more clearly from figure 8, in which 

(7.1) 
has been plotted, for convenience, against In r .  The particular values of the parameters 
are a = 0.5 and /3 = 10.04. The curves corresponding to N = 20,40 and 60 show that as 

5 = Re {c} = g d  cos $19 
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cos $0 = 8Br-g cos ($,u In r - e), 

737 

Since 5 = j rs  cos $0, an asymptotic expression for the free-surface profile is given by 

(7.4) 

where B and e are given by (7.3).  From figure 8 we see that this expression is a good 
approximation not only for large values of r but over the whole range 1 < r < co. 

8. The maximum slope 
I n  some analytical studies of symmetric water waves (Krasovskii 1961; Keady & 

Pritchard 1974) it  has been assumed that the maximum slope angle of the free surface 
does not exceed the value 30" corresponding to the Stokes corner flow. Thus i t  is 
interesting to note from figure 9 that, in the region where the free surface lies outside 
the asymptote, the maximum slope slightly exceeds 30". The precise value is 30.37". 
Some confirmation is provided by the recent calculations of Sasaki & Murakami (1973) 
on steep solitary waves and periodic waves in deep water. In  figure 10 we have plotted 
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0.8 0.9 

w 

1 .o 

FIGURE 10. Comparison of the maximum slope of solitary waves as a function of w .  + , Sasaki & 
Murakami (1973) ; 0, Byatt-Smith & Longuet-Higgins (1976). 
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FIQURE 11. The maximum slope of solitary waves, as a function of w (scale enlarged). +, from 
calculations of Sasaki & Murakami (1973) ; @, from asymptotic profile of figure 9. 

their values for the maximum slope s,,, in solitary waves against the parameter w 
defined in 0 1. On the same graph are plotted some values calculated by Byatt-Smith & 
Longuet-Higgins (1976), showing that the two sets of calculations are consistent. 
Though none of the plotted values actually exceeds 30", a linear extrapolation from the 
values of Sasaki & Murakami (see figure 11) intersects the limiting axis w = 1 very 
close to the value that we have just found. 

A similar comparison can also be made for progressive waves in deep water. In 
figure 12 we have plotted the results of Sasaki & Murakami for this case against the 

introduced by Longuet-Higgins (1975) .  Here q and q' denote the particle speeds at the 
crest and trough respectively, in the steady flow relative to a frame moving with the 
wave speed c ,  and co denotes the speed of infinitesimal waves having the same wave- 
length. A linear extrapolation from the plotted points in figure 11 passes even closer 
to the point on the axis w = 1 corresponding to our value of s,,,. This confirms that the 
solution we have found does indeed represent a locally valid asymptotic form for steep 
gravity waves, whether in deep or in shallow water. 

parameter wI = 1 -q2qyczc;, 
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W’ 

FIGURE 12. The maximum slope of deep-water waves, as a function of w’. + , from calculations of 
Sasaki & Murakami (1 973) ; 0, from asymptotic profile of figure 9. 

9. Acceleration at the crest 
In  StokeE’s corner flow the acceleration of the fluid a t  the free surface is the same as 

that of a particle sliding freely down an inclined plane a t  an angle of 30” to the horizon- 
tal. Thus the acceleration equals ig?  directed down the slope. In  the interior of the 
fluid i t  can be shown (see Longuet-Higgins 1963) that the magnitude of the accelera- 
tion is i g  everywhere, with the direction always radially away from the crest. So the 
acceleration vector has a strong singularity at the sharp corner. 

In  the present solution, the velocity and acceleration are everywhere smooth. The 
acceleration a t  the crest is given by 

where q is the particle velocity at the crest and R is the radius of curvature of the 
profile. I n  our scaling g = I, q 2  = 2 and so 

W = @/R,  (9.1) 

W = 2gl/R. (9 .2 )  

W = 0.3889 (9.3) 

From the series of $6? summed with the help of Pad6 approximants to 40 terms, we 
find R = 5.15 and hence 

directed vertically downwards. This is to be compared with the values found by Sasaki 
& Murakami for their steepest solitary and progressive waves, namely 0.3799. In  the 
far field, as r/2 -+ co, the acceleration tends to the value +g appropriate to the Stokes 
corner flow. 

25-2 
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0.00 
0.02 
0.04 
0.06 
0.08 

0.10 
0.12 
0.14 
0.16 
0.18 

0.20 
0.22 
0.24 
0.26 
0.28 

0.30 
0.32 
0.34 
0.36 
0.38 

0.40 
0.42 
0.44 
0.46 
0.48 

"11 
1~0000 
1.0464 
1.1709 
1.3448 
1.5445 

1.7564 
1.9732 
2.1915 
2.4097 
2.627 1 

2,8438 
3.0598 
3.2757 
3.4919 
3.7090 

3.9274 
4.1480 
4.37 12 
4.5978 
4.8286 

5.0643 
5.3059 
5.5542 
5.8103 
6.0754 

YP 
0~0000 
0.6953 
1.3539 
1.9607 
2.5182 

3.0347 
3.5187 
3.9772 
4.4160 
4.8393 

5.2508 
5.6534 
6.0495 
6.4413 
6.8307 

7.2193 
7.6090 
8-001 1 
8.3972 
8.7989 

9.2078 
9.6255 

10.0539 
10.4947 
10.9500 

7177 

0.50 
0.52 
0.54 
0.56 
0.58 

0.60 
0.62 
0.64 
0.66 
0.68 

0.70 
0.72 
0.74 
0.76 
0.78 

0.80 
0.82 
0.84 
0.86 
0.88 

0.90 
0.92 
0.94 
0.96 
0.98 

"11 
6.3508 
6.6378 
6.9383 
7.2541 
7.5876 

7.9412 
8.3181 
8.7221 
9.1577 
9.6302 

10.1467 
10.7155 
11.3476 
12.0572 
12.8632 

13.791 1 
14.8769 
16.1724 
17.7561 
19.7536 

22.379 
26.038 
31.606 
41.47 
65.85 

Y l J  
11.4223 
11.9140 
12.4282 
12.968 1 
13-5376 

14.1414 
14.7847 
15.4740 
16.21 70 
17.0232 

17.9043 
18.8750 
19.9541 
21.1 660 
22.5432 

24.1299 
25.9879 
28.2069 
30.9224 
34.3511 

38.864 
45.161 
54.759 
71.79 

113.97 

TABLE 3. Cartesian co-ordinates of the free surface. 

10. Conclusion 
The Cartesian co-ordinates of the surface profile are given in table 3. Because the 

length scale I is independent of g, we have effectively found a family of self-similar 
flows, each tending to the Stokes corner flow at infinity. At any fixed position in the 
physical plane, when I -+ 0, the flow tends also to the Stokes flow. We have found empiri- 
cally (see figure 1) that the surface profile agrees with that found from a calculation of 
a complete solitary wave. Further corroboration, both for solitary waves and pro- 
gressive waves in deep water, comes from the maximum angle of slope (figures 11 and 
12). The fact that the maximum slope very slightly exceeds 30" will necessitate the 
reconsideration of some earlier proofs of the existence of progressive gravity waves of 
finite amplitude. 

It remains to be shown how the present solution can be used as an 'inner' solution, 
valid near the crest and matched asymptotically to an outer solution representing the 
remainder of the wave, so providing an independent method of calculation for steep 
gravity waves. This will be done in a paper to follow. 
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